NCERT Solutions for Class 11 Maths Maths Chapter 4

Principle of Mathematical Induction Class 11
Chapter 4 Principle of Mathematical Induction Exercise 4.1 Solutions
Exercise 4.1 : Solutions of Questions on Page Number : 94
Q1 :
Prove the following by using the principle of mathematical induction for all $n \in N$:
$1+3+3^{2}+\ldots+3^{n-1}=\frac{\left(3^{n}-1\right)}{2}$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,

$$
\left(3^{n}-1\right)
$$

$P(n): 1+3+3^{2}+\ldots+3^{n e^{-11}}=2$
For $n=1$, we have
$P(1): 1=\frac{\left(3^{1}-1\right)}{2}=\frac{3-1}{2}=\frac{2}{2}=1$, which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$1+3+3^{2}+\ldots+3^{k-1}=\frac{\left(3^{k}-1\right)}{2}$
We shall now prove that $P(k+1)$ is true.
Consider
$1+3+3^{2}+\ldots+3^{\text {raé }^{-1}}+3^{(k+1) \text { én }^{\prime \prime}}$
$=\left(1+3+3^{2}+\ldots+3^{\text {kél }^{-1}}\right)+3^{k}$
$=\frac{\left(3^{k}-1\right)}{2}+3^{k}$
[Using (i)]
$=\frac{\left(3^{k}-1\right)+2.3^{k}}{2}$
$=\frac{(1+2) 3^{k}-1}{2}$
$=\frac{3.3^{k}-1}{2}$
$=\frac{3^{k+1}-1}{2}$

Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q2 :
Prove the following by using the principle of mathematical induction for
all $n \in N$:

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$P(n)$:

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

For $n=1$, we have
$P(1): 1^{3}=1=\left(\frac{1(1+1)}{2}\right)^{2}=\left(\frac{1.2}{2}\right)^{2}=1^{2}=1$, which is true.

Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,

$$
\begin{equation*}
1^{3}+2^{3}+3^{3}+\ldots .+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2} \tag{i}
\end{equation*}
$$

We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider
$1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}$

$$
\begin{aligned}
& =\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} \\
& =\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} \\
& =\frac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4} \\
& =\frac{(k+1)^{2}\left\{k^{2}+4(k+1)\right\}}{4} \\
& =\frac{(k+1)^{2}\left\{k^{2}+4 k+4\right\}}{4} \\
& =\frac{(k+1)^{2}(k+2)^{2}}{4} \\
& =\frac{(k+1)^{2}(k+1+1)^{2}}{4} \\
& =\left(\frac{(k+1)(k+1+1)}{2}\right)^{2}
\end{aligned}
$$

$=\left(1^{3}+2^{3}+3^{3}+\ldots .+k^{3}\right)+(k+1)^{3}$
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q3 :
Prove the following by using the principle of mathematical induction for
all $n \in N: \quad 1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+\ldots n)}=\frac{2 n}{(n+1)}$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n): 1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots n}=\frac{2 n}{n+1}$
For $n=1$, we have
$P(1): 1=\frac{2.1}{1+1}=\frac{2}{2}=1 \quad$ which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,

$$
\begin{equation*}
1+\frac{1}{1+2}+\ldots+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots+k}=\frac{2 k}{k+1} \tag{i}
\end{equation*}
$$

We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider

$$
\begin{aligned}
& 1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots+k}+\frac{1}{1+2+3+\ldots+k+(k+1)} \\
& =\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots k}\right)+\frac{1}{1+2+3+\ldots+k+(k+1)} \\
& =\frac{2 k}{k+1}+\frac{1}{1+2+3+\ldots+k+(k+1)} \\
& =\frac{2 k}{k+1}+\frac{1}{\left(\frac{(k+1)(k+1+1)}{2}\right)} \quad[\text { Using (i)] } \\
& =\frac{2 k}{(k+1)}+\frac{2}{(k+1)(k+2)} \\
& =\frac{2}{(k+1)}\left(k+\frac{1}{k+2}\right) \\
& =\frac{2}{k+1}\left(\frac{k(k+2)+1}{k+2}\right) \\
& =\frac{2}{(k+1)}\left(\frac{k^{2}+2 k+1}{k+2}\right) \\
& =\frac{2 \cdot(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{2(k+1)}{(k+2)}
\end{aligned}
$$

Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q4 :
Prove the following by using the principle of mathematical induction for all $n \in N: 1.2 .3+2.3 .4+\ldots+n(n+1)$
$(n+2)=\frac{\frac{n(n+1)(n+2)(n+3)}{4}}{4}$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n): 1.2 .3+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$
For $n=1$, we have

Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$1.2 .3+2.3 .4+\ldots+k(k+1)(k+2)=\frac{k(k+1)(k+2)(k+3)}{4}$
We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider

$$
\begin{aligned}
& \text { 1.2.3 }+2.3 .4+\ldots+k(k+1)(k+2)+(k+1)(k+2)(k+3) \\
& =\{1.2 \cdot 3+2.3 .4+\ldots+k(k+1)(k+2)\}+(k+1)(k+2)(k+3) \\
& \left.=\frac{k(k+1)(k+2)(k+3)}{4}+(k+1)(k+2)(k+3) \quad \text { [Using }(\mathrm{i})\right] \\
& =(k+1)(k+2)(k+3)\left(\frac{k}{4}+1\right) \\
& =\frac{(k+1)(k+2)(k+3)(k+4)}{4} \\
& =\frac{(k+1)(k+1+1)(k+1+2)(k+1+3)}{4}
\end{aligned}
$$

true.
Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., n.

Q5:
Prove the following by using the principle of mathematical induction for
all $n \in N$:

$$
1.3+2.3^{2}+3.3^{3}+\ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}
$$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,

$$
1.3+2.3^{2}+3.3^{3}+\ldots+n 3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}
$$

$\mathrm{P}(n)$:
For $n=1$, we have
$P(1): 1.3=3=\frac{(2.1-1) 3^{1+1}+3}{4}=\frac{3^{2}+3}{4}=\frac{12}{4}=3$, which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,

$$
\begin{equation*}
1.3+2.3^{2}+3.3^{3}+\ldots+k 3^{k}=\frac{(2 k-1) 3^{k+1}+3}{4} \tag{i}
\end{equation*}
$$

We shall now prove that $P(k+1)$ is true.
Consider
$1.3+2.3^{2}+3.3^{3}+\ldots+k 3^{k}+(k+1) 3^{k+1}$
$=\left(1.3+2.3^{2}+3.3^{3}+\ldots+k .3^{k}\right)+(k+1) 3^{k+1}$
$=\frac{(2 k-1) 3^{k+1}+3}{4}+(k+1) 3^{k+1}$
[Using (i)]
$=\frac{(2 k-1) 3^{k+1}+3+4(k+1) 3^{k+1}}{4}$
$=\frac{3^{k+1}\{2 k-1+4(k+1)\}+3}{4}$
$=\frac{3^{k+1}\{6 k+3\}+3}{4}$
$=\frac{3^{k+1} \cdot 3\{2 k+1\}+3}{4}$
$=\frac{3^{(k+1)+1}\{2 k+1\}+3}{4}$
$=\frac{\{2(k+1)-1\} 3^{(k+1)+1}+3}{4}$
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q6 :
Prove the following by using the principle of mathematical induction for
all $n \in N$:

$$
1.2+2.3+3.4+\ldots+n \cdot(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]
$$

Answer:

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n): 1.2+2.3+3.4+\ldots+n .(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$
For $n=1$, we have
$P(1): \quad 1.2=2=\frac{1(1+1)(1+2)}{3}=\frac{1.2 .3}{3}=2$, which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,

$$
\begin{equation*}
1.2+2.3+3.4+\ldots . .+k \cdot(k+1)=\left[\frac{k(k+1)(k+2)}{3}\right] \tag{i}
\end{equation*}
$$

We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider

$$
\begin{aligned}
& 1.2+2 \cdot 3+3 \cdot 4+\ldots+k \cdot(k+1)+(k+1) \cdot(k+2) \\
& =[1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+k \cdot(k+1)]+(k+1) \cdot(k+2) \\
& =\frac{k(k+1)(k+2)}{3}+(k+1)(k+2) \\
& =(k+1)(k+2)\left(\frac{k}{3}+1\right) \\
& =\frac{(k+1)(k+2)(k+3)}{3} \\
& =\frac{(k+1)(k+1+1)(k+1+2)}{3}
\end{aligned}
$$

Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., n.

Q7:

Prove the following by using the principle of mathematical induction for
all $n \in N$:

$$
1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}
$$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,

$$
\mathrm{P}(n): \quad 1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}
$$

For $n=1$, we have

$$
P(1): 1.3=3=\frac{1\left(4.1^{2}+6.1-1\right)}{3}=\frac{4+6-1}{3}=\frac{9}{3}=3, \text { which is true. }
$$

Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,

$$
\begin{equation*}
1.3+3.5+5.7+\ldots \ldots+(2 k-1)(2 k+1)=\frac{k\left(4 k^{2}+6 k-1\right)}{3} \tag{i}
\end{equation*}
$$

We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider

$$
\begin{aligned}
& \left(1.3+3.5+5.7+\ldots+\left(2 k \hat{a ̂} \epsilon^{\prime \prime} 1\right)(2 k+1)+\left\{2(k+1) \hat{a ̂ \epsilon^{\prime \prime}} 1\right\}\{2(k+1)+1\}\right. \\
& =\frac{k\left(4 k^{2}+6 k-1\right)}{3}+(2 k+2-1)(2 k+2+1) \quad \text { [Using (i)] } \\
& =\frac{k\left(4 k^{2}+6 k-1\right)}{3}+(2 k+1)(2 k+3) \\
& =\frac{k\left(4 k^{2}+6 k-1\right)}{3}+\left(4 k^{2}+8 k+3\right) \\
& =\frac{k\left(4 k^{2}+6 k-1\right)+3\left(4 k^{2}+8 k+3\right)}{3} \\
& =\frac{4 k^{3}+6 k^{2}-k+12 k^{2}+24 k+9}{3} \\
& =\frac{4 k^{3}+18 k^{2}+23 k+9}{3} \\
& =\frac{4 k^{3}+14 k^{2}+9 k+4 k^{2}+14 k+9}{3} \\
& =\frac{k\left(4 k^{2}+14 k+9\right)+1\left(4 k^{2}+14 k+9\right)}{3} \\
& =\frac{(k+1)\left(4 k^{2}+14 k+9\right)}{3} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(k+1)\left\{4 k^{2}+8 k+4+6 k+6-1\right\}}{3} \\
& =\frac{(k+1)\left\{4\left(k^{2}+2 k+1\right)+6(k+1)-1\right\}}{3} \\
& =\frac{(k+1)\left\{4(k+1)^{2}+6(k+1)-1\right\}}{3}
\end{aligned}
$$

Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., n.

Q8 :
Prove the following by using the principle of mathematical induction for all $n \in N: 1.2+2.2^{2}+3.2^{2}+\ldots+n .2^{n}=$ $(n-1) 2^{n+1}+2$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$P(n): 1.2+2.2^{2}+3.2^{2}+\ldots+n .2^{n}=\left(n\right.$ â $\left.\epsilon^{\prime \prime} 1\right) 2^{n+1}+2$
For $n=1$, we have
$P(1): 1.2=2=(1 \hat{\text { â€ " }} 1) 2^{1+1}+2=0+2=2$, which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$1.2+2.2^{2}+3.2^{2}+\ldots+k .2^{k}=\left(k\right.$ â€" 1) $2^{k+1}+2 \ldots$ (i)
We shall now prove that $P(k+1)$ is true.
Consider
$\left\{1.2+2.2^{2}+3.2^{3}+\ldots+k .2^{k}\right\}+(k+1) \cdot 2^{k+1}$
$=(k-1) 2^{k+1}+2+(k+1) 2^{k+1}$
$=2^{k+1}\{(k-1)+(k+1)\}+2$
$=2^{k+1} \cdot 2 k+2$
$=k \cdot 2^{(k+1)+1}+2$
$=\{(k+1)-1\} 2^{(k+1)+1}+2$
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., n.

Q9 :

Prove the following by using the principle of mathematical induction for
all $n \in N: \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n): \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$
For $n=1$, we have
$P(1): \frac{1}{2}=1-\frac{1}{2^{1}}=\frac{1}{2}$, which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{k}}=1-\frac{1}{2^{k}}$
We shall now prove that $P(k+1)$ is true.
Consider
$\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots .+\frac{1}{2^{k}}\right)+\frac{1}{2^{k+1}}$
$=\left(1-\frac{1}{2^{k}}\right)+\frac{1}{2^{k+1}}$
[Using (i)]
$=1-\frac{1}{2^{k}}+\frac{1}{2 \cdot 2^{k}}$
$=1-\frac{1}{2^{k}}\left(1-\frac{1}{2}\right)$
$=1-\frac{1}{2^{k}}\left(\frac{1}{2}\right)$
$=1-\frac{1}{2^{k+1}}$
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q10 :
Prove the following by using the principle of mathematical induction for
all $n \in N$:

$$
\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}
$$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,

$$
\mathrm{P}(n): \frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}
$$

For $n=1$, we have

$$
P(1)=\frac{1}{2.5}=\frac{1}{10}=\frac{1}{6.1+4}=\frac{1}{10}, \text { which is true. }
$$

Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,

$$
\begin{equation*}
\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 k-1)(3 k+2)}=\frac{k}{6 k+4} \tag{i}
\end{equation*}
$$

We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider

$$
\begin{aligned}
& \frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots \ldots+\frac{1}{(3 k-1)(3 k+2)}+\frac{1}{\{3(k+1)-1\}\{3(k+1)+2\}} \\
& =\frac{k}{6 k+4}+\frac{1}{(3 k+3-1)(3 k+3+2)} \\
& =\frac{k}{6 k+4}+\frac{1}{(3 k+2)(3 k+5)} \\
& =\frac{k}{2(3 k+2)}+\frac{1}{(3 k+2)(3 k+5)} \\
& =\frac{1}{(3 k+2)}\left(\frac{k}{2}+\frac{1}{3 k+5}\right) \\
& =\frac{1}{(3 k+2)}\left(\frac{k(3 k+5)+2}{2(3 k+5)}\right) \\
& =\frac{1}{(3 k+2)}\left(\frac{3 k^{2}+5 k+2}{2(3 k+5)}\right) \\
& =\frac{1}{(3 k+2)}\left(\frac{(3 k+2)(k+1)}{2(3 k+5)}\right) \\
& =\frac{(k+1)}{6 k+10} \\
& =\frac{(k+1)}{6(k+1)+4}
\end{aligned}
$$

Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q11:
Prove the following by using the principle of mathematical induction for
all $n \in N: \frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n): \frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$
For $n=1$, we have

$$
P(1): \frac{1}{1 \cdot 2 \cdot 3}=\frac{1 \cdot(1+3)}{4(1+1)(1+2)}=\frac{1 \cdot 4}{4 \cdot 2 \cdot 3}=\frac{1}{1 \cdot 2 \cdot 3}
$$

Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots+\frac{1}{k(k+1)(k+2)}=\frac{k(k+3)}{4(k+1)(k+2)}$
We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider

$$
\left.\begin{array}{l}
{\left[\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots \cdot \cdot+\frac{1}{k(k+1)(k+2)}\right]+\frac{1}{(k+1)(k+2)(k+3)}} \\
=\frac{k(k+3)}{4(k+1)(k+2)}+\frac{1}{(k+1)(k+2)(k+3)} \\
=\frac{1}{(k+1)(k+2)}\left\{\frac{k(k+3)}{4}+\frac{1}{k+3}\right\} \\
=\frac{1}{(k+1)(k+2)}\left\{\frac{k(k+3)^{2}+4}{4(k+3)}\right\} \\
=\frac{1}{(k+1)(k+2)}\left\{\frac{k\left(k^{2}+6 k+9\right)+4}{4(k+3)}\right\} \\
=\frac{1}{(k+1)(k+2)}\left\{\frac{k^{3}+6 k^{2}+9 k+4}{4(k+3)}\right\} \\
=\frac{1}{(k+1)(k+2)}\left\{\frac{k^{3}+2 k^{2}+k+4 k^{2}+8 k+4}{4(k+3)}\right\} \\
=\frac{1}{(k+1)(k+2)}\left\{\frac{k\left(k^{2}+2 k+1\right)+4\left(k^{2}+2 k+1\right)}{4(k+3)}\right\} \\
=\frac{1}{(k+1)(k+2)}\left\{\frac{k(k+1)^{2}+4(k+1)^{2}}{4(k+3)}\right\} \\
\left.=\frac{(k+1)^{2}(k+4)}{4(k+1)(k+2)}\right\} \\
=\frac{(k+1)\{(k+1)+3)}{4\{(k+1)+1\}\{(k+1)+2\}} \\
\\
=(k+1
\end{array}\right\}
$$

Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., n.

Q12 :
Prove the following by using the principle of mathematical induction for
all $n \in N: \quad a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n): a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$
For $n=1$, we have
$\mathrm{P}(1): a=\frac{a\left(r^{1}-1\right)}{(r-1)}=a$, which is true.

Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,

$$
\begin{equation*}
a+a r+a r^{2}+\ldots \ldots .+a r^{k-1}=\frac{a\left(r^{k}-1\right)}{r-1} \tag{i}
\end{equation*}
$$

We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider
$\left\{a+a r+a r^{2}+\ldots \ldots+a r^{k-1}\right\}+a r^{(k+1)-1}$
$=\frac{a\left(r^{k}-1\right)}{r-1}+a r^{k}$
$[\operatorname{Using}(i)]$
$=\frac{a\left(r^{k}-1\right)+a r^{k}(r-1)}{r-1}$
$=\frac{a\left(r^{k}-1\right)+a r^{k+1}-a r^{k}}{r-1}$
$=\frac{a r^{k}-a+a r^{k+1}-a r^{k}}{r-1}$
$=\frac{a r^{k+1}-a}{r-1}$
$=\frac{a\left(r^{k+1}-1\right)}{r-1}$
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., n.

Q13 :

Prove the following by using the principle of mathematical induction for
all $n \in N:\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \cdots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n):\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}$
For $n=1$, we have
$P(1):\left(1+\frac{3}{1}\right)=4=(1+1)^{2}=2^{2}=4$, which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 k+1)}{k^{2}}\right)=(k+1)^{2}$
We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider
$\left[\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 k+1)}{k^{2}}\right)\right]\left\{1+\frac{\{2(k+1)+1\}}{(k+1)^{2}}\right\}$
$=(k+1)^{2}\left(1+\frac{2(k+1)+1}{(k+1)^{2}}\right)$
[Using(1)
$=(k+1)^{2}\left[\frac{(k+1)^{2}+2(k+1)+1}{(k+1)^{2}}\right]$
$=(k+1)^{2}+2(k+1)+1$
$=\{(k+1)+1\}^{2}$
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., n.

Q14 :

Prove the following by using the principle of mathematical induction for
all $n \in N:\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1)$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1)$

For $n=1$, we have
$P(1):\left(1+\frac{1}{1}\right)=2=(1+1)$, which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$\mathrm{P}(k):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{k}\right)=(k+1)$
We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider
$\left[\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{k}\right)\right]\left(1+\frac{1}{k+1}\right)$
$=(k+1)\left(1+\frac{1}{k+1}\right)$
$[$ Using (1) $]$
$=(k+1)\left(\frac{(k+1)+1}{(k+1)}\right)$
$=(k+1)+1$
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., n.

Q15 :

Prove the following by using the principle of mathematical induction for
all $n \in N$:

$$
1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}
$$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n)=1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
For $n=1$, we have
$P(1)=1^{2}=1=\frac{1(2.1-1)(2.1+1)}{3}=\frac{1.1 .3}{3}=1$, which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$\mathrm{P}(k)=1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}=\frac{k(2 k-1)(2 k+1)}{3}$

We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider

$$
\begin{align*}
& \left\{1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}\right\}+\{2(k+1)-1\}^{2} \\
& =\frac{k(2 k-1)(2 k+1)}{3}+(2 k+2-1)^{2} \tag{Using}\\
& =\frac{k(2 k-1)(2 k+1)}{3}+(2 k+1)^{2} \\
& =\frac{k(2 k-1)(2 k+1)+3(2 k+1)^{2}}{3} \\
& =\frac{(2 k+1)\{k(2 k-1)+3(2 k+1)\}}{3} \\
& =\frac{(2 k+1)\left\{2 k^{2}-k+6 k+3\right\}}{3} \\
& =\frac{(2 k+1)\left\{2 k^{2}+5 k+3\right\}}{3} \\
& =\frac{(2 k+1)\left\{2 k^{2}+2 k+3 k+3\right\}}{3} \\
& =\frac{(2 k+1)\{2 k(k+1)+3(k+1)\}}{3} \\
& =\frac{(2 k+1)(k+1)(2 k+3)}{3} \\
& =\frac{(k+1)\{2(k+1)-1\}\{2(k+1)+1\}}{3} \\
& = \\
& =
\end{align*}
$$

Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q16 :

Prove the following by using the principle of mathematical induction for
all $n \in N$:

$$
\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}
$$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,

$$
\mathrm{P}(n): \frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}
$$

For $n=1$, we have
$P(1)=\frac{1}{1.4}=\frac{1}{3.1+1}=\frac{1}{4}=\frac{1}{1.4}$, which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,

$$
\begin{equation*}
\mathrm{P}(k)=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 k-2)(3 k+1)}=\frac{k}{3 k+1} \tag{1}
\end{equation*}
$$

We shall now prove that $\mathrm{P}(k+1)$ is true.
Consider

$$
\begin{aligned}
& \left\{\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 k-2)(3 k+1)}\right\}+\frac{1}{\{3(k+1)-2\}\{3(k+1)+1\}} \\
& =\frac{k}{3 k+1}+\frac{1}{(3 k+1)(3 k+4)} \\
& =\frac{1}{(3 k+1)}\left\{k+\frac{1}{(3 k+4)}\right\} \\
& =\frac{1}{(3 k+1)}\left\{\frac{k(3 k+4)+1}{(3 k+4)}\right\} \\
& =\frac{1}{(3 k+1)}\left\{\frac{3 k^{2}+4 k+1}{(3 k+4)}\right\} \\
& =\frac{1}{(3 k+1)}\left\{\frac{3 k^{2}+3 k+k+1}{(3 k+4)}\right\} \\
& =\frac{(3 k+1)(k+1)}{(3 k+1)(3 k+4)} \\
& =\frac{(k+1)}{3(k+1)+1}
\end{aligned}
$$

Thus, $P(k+1)$ is true whenever $P(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q17 :

Prove the following by using the principle of mathematical induction for
all $n \in N: \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$
For $n=1$, we have
$\mathrm{P}(1): \frac{1}{3.5}=\frac{1}{3(2.1+3)}=\frac{1}{3.5}$
, which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$\mathrm{P}(k): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 k+1)(2 k+3)}=\frac{k}{3(2 k+3)}$
We shall now prove that $P(k+1)$ is true.
Consider

$$
\begin{aligned}
& {\left[\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 k+1)(2 k+3)}\right]+\frac{1}{\{2(k+1)+1\}\{2(k+1)+3\}}} \\
& =\frac{k}{3(2 k+3)}+\frac{1}{(2 k+3)(2 k+5)} \\
& =\frac{1}{(2 k+3)}\left[\frac{k}{3}+\frac{1}{(2 k+5)}\right] \\
& =\frac{1}{(2 k+3)}\left[\frac{k(2 k+5)+3}{3(2 k+5)}\right] \\
& =\frac{1}{(2 k+3)}\left[\frac{2 k^{2}+5 k+3}{3(2 k+5)}\right] \\
& =\frac{1}{(2 k+3)}\left[\frac{2 k^{2}+2 k+3 k+3}{3(2 k+5)}\right] \\
& =\frac{1}{(2 k+3)}\left[\frac{2 k(k+1)+3(k+1)}{3(2 k+5)}\right] \\
& =\frac{(k+1)(2 k+3)}{3(2 k+3)(2 k+5)} \\
& =\frac{(k+1)}{3\{2(k+1)+3\}}
\end{aligned}
$$

hus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q18 :
Prove the following by using the principle of mathematical induction for
all $n \in N: \quad 1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}$

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n): 1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}$
It can be noted that $\mathrm{P}(n)$ is true for $n=1$ since $1<\frac{1}{8}(2.1+1)^{2}=\frac{9}{8}$. Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,

$$
\begin{equation*}
1+2+\ldots+k<\frac{1}{8}(2 k+1)^{2} \tag{1}
\end{equation*}
$$

We shall now prove that $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Consider
$(1+2+\ldots+k)+(k+1)<\frac{1}{8}(2 k+1)^{2}+(k+1) \quad[U \operatorname{sing}(1)]$
$<\frac{1}{8}\left\{(2 k+1)^{2}+8(k+1)\right\}$
$<\frac{1}{8}\left\{4 k^{2}+4 k+1+8 k+8\right\}$
$<\frac{1}{8}\left\{4 k^{2}+12 k+9\right\}$
$<\frac{1}{8}(2 k+3)^{2}$
$<\frac{1}{8}\{2(k+1)+1\}^{2}$
Hence, $(1+2+3+\ldots+k)+(k+1)<\frac{1}{8}(2 k+1)^{2}+(k+1)$
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., n.

Q19 :
Prove the following by using the principle of mathematical induction for all $n \in N: n(n+1)(n+5)$ is a multiple of 3.

Answer :
Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n): n(n+1)(n+5)$, which is a multiple of 3 .
It can be noted that $P(n)$ is true for $n=1$ since $1(1+1)(1+5)=12$, which is a multiple of 3 .
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$k(k+1)(k+5)$ is a multiple of 3 .
$\therefore k(k+1)(k+5)=3 m$, where $m \in \mathbf{N}$
We shall now prove that $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Consider
$(k+1)\{(k+1)+1\}\{(k+1)+5\}$
$=(k+1)(k+2)\{(k+5)+1\}$
$=(k+1)(k+2)(k+5)+(k+1)(k+2)$
$=\{k(k+1)(k+5)+2(k+1)(k+5)\}+(k+1)(k+2)$
$=3 m+(k+1)\{2(k+5)+(k+2)\}$
$=3 m+(k+1)\{2 k+10+k+2\}$
$=3 m+(k+1)(3 k+12)$
$=3 m+3(k+1)(k+4)$
$=3\{m+(k+1)(k+4)\}=3 \times q$, where $q=\{m+(k+1)(k+4)\}$ is some natural number
Therefore, $(k+1)\{(k+1)+1\}\{(k+1)+5\}$ is a multiple of 3 .
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q20 :

Prove the following by using the principle of mathematical induction for all $n \in N: 10^{2 n-1}+1$ is divisible by 11 .

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$P(n): 10^{2 n \text { â } \epsilon^{1}}+1$ is divisible by 11 .
It can be observed that $P(n)$ is true for $n=1$ since $P(1)=10^{2 \cdot 1 \epsilon^{\epsilon} 1}+1=11$, which is divisible by 11 .
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$10^{2 \text { ràe" } 1}+1$ is divisible by 11 .
$\therefore 10^{\text {rıäe }^{\prime \prime} 1}+1=11 m$, where $m \in \mathbf{N} \ldots$ (1)
We shall now prove that $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Consider
$10^{2(k+1)-1}+1$
$=10^{2 K+2-1}+1$
$=10^{2 k+1}+1$
$=10^{2}\left(10^{2 k-1}+1-1\right)+1$
$=10^{2}\left(10^{2 k-1}+1\right)-10^{2}+1$
$=10^{2} .11 \mathrm{~m}-100+1 \quad[$ Using $(1)]$
$=100 \times 11 \mathrm{~m}-99$
$=11(100 \mathrm{~m}-9)$
$=11 r$, where $r=(100 m-9)$ is some natural number
Therefore, $10^{2(k+1)-1}+1$ is divisible by 11 .
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., n.

Q21 :

Prove the following by using the principle of mathematical induction for all $n \in N: x^{2 n}-y^{2 n}$ is divisible by $x+y$.

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n): x^{2 n} \hat{a} \epsilon^{\prime \prime} y^{2 n}$ is divisible by $x+y$.
It can be observed that $\mathrm{P}(n)$ is true for $n=1$.
This is so because $x^{2 \times 1} \hat{a} €^{\prime \prime} y^{2 \times 1}=x^{2} \hat{a ̂} €^{\prime \prime} y^{2}=(x+y)\left(x \hat{a} \epsilon^{\prime \prime} y\right)$ is divisible by $(x+y)$.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$x^{2 k} \hat{a} €^{\prime \prime} y^{2 k}$ is divisible by $x+y$.
$\therefore x^{2 k} \hat{a} \epsilon^{\prime \prime} y^{2 k}=m(x+y)$, where $m \in \mathbf{N}$.
We shall now prove that $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Consider

$$
\begin{aligned}
& x^{2(k+1)}-y^{2(k+1)} \\
& =x^{2 k} \cdot x^{2}-y^{2 k} \cdot y^{2} \\
& =x^{2}\left(x^{2 k}-y^{2 k}+y^{2 k}\right)-y^{2 k} \cdot y^{2} \\
& \left.=x^{2}\left\{m(x+y)+y^{2 k}\right\}-y^{2 k} \cdot y^{2} \quad \quad \text { Using }(1)\right] \\
& =m(x+y) x^{2}+y^{2 k} \cdot x^{2}-y^{2 k} \cdot y^{2} \\
& =m(x+y) x^{2}+y^{2 k}\left(x^{2}-y^{2}\right) \\
& =m(x+y) x^{2}+y^{2 k}(x+y)(x-y) \\
& =(x+y)\left\{m x^{2}+y^{2 k}(x-y)\right\}, \text { which is a factor of }(x+y) .
\end{aligned}
$$

Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q22 :

Prove the following by using the principle of mathematical induction for all $n \in N: 3^{2 n+2}-8 n-9$ is divisible by 8.

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$P(n): 3^{2 n+2}$ â $\epsilon^{\prime \prime} 8 n$ â $\epsilon^{\prime \prime} 9$ is divisible by 8 .
It can be observed that $\mathrm{P}(n)$ is true for $n=1$ since $3^{2 \times 1+2} \hat{\mathrm{a}} €^{\prime \prime} 8 \times 1$ â€" $9=64$, which is divisible by 8 .
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$3^{2 k+2}$ â $\epsilon^{\prime \prime} 8 k$ â $\epsilon^{\prime \prime} 9$ is divisible by 8 .
$\therefore 3^{2 k+2}$ â $\epsilon^{\prime \prime} 8 k$ â $€^{\prime \prime} 9=8 m$; where $m \in \mathbf{N}$
We shall now prove that $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Consider

$$
\begin{aligned}
& 3^{2(k+1)+2}-8(k+1)-9 \\
& =3^{2 k+2} \cdot 3^{2}-8 k-8-9 \\
& =3^{2}\left(3^{2 k+2}-8 k-9+8 k+9\right)-8 k-17 \\
& =3^{2}\left(3^{2 k+2}-8 k-9\right)+3^{2}(8 k+9)-8 k-17 \\
& =9.8 m+9(8 k+9)-8 k-17 \\
& =9.8 m+72 k+81-8 k-17 \\
& =9.8 m+64 k+64 \\
& =8(9 m+8 k+8)
\end{aligned}
$$

$=8 r$, where $r=(9 m+8 k+8)$ is a natural number
Therefore, $3^{2(k+1)+2}-8(k+1)-9$ is divisible by 8 .
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., n.

Q23 :

Prove the following by using the principle of mathematical induction for all $n \in N: 41^{n}-14^{n}$ is a multiple of 27.

Answer :

Let the given statement be $\mathrm{P}(n)$, i.e.,
$P(n): 41^{n}$ â $\epsilon^{" 1} 14^{n}$ is a multiple of 27 .
It can be observed that $\mathrm{P}(n)$ is true for $n=1$ since $41^{1}-14^{1}=27$, which is a multiple of 27 .
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
41^{k} â $€^{\prime \prime} 14^{\text {kis }}$ a multiple of 27
$\therefore 41^{k}$ â $€^{\prime \prime} 14^{k}=27 m$, where $m \in \mathbf{N} \ldots$ (1)
We shall now prove that $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Consider

$$
\begin{aligned}
& 41^{k+1}-14^{k+1} \\
& =41^{k} \cdot 41-14^{k} \cdot 14 \\
& =41\left(41^{k}-14^{k}+14^{k}\right)-14^{k} \cdot 14 \\
& =41\left(41^{k}-14^{k}\right)+41.14^{k}-14^{k} \cdot 14 \\
& =41.27 m+14^{k}(41-14) \\
& =41.27 m+27.14^{k} \\
& =27\left(41 m-14^{k}\right) \\
& =27 \times r, \text { where } r=\left(41 m-14^{k}\right) \text { is a natural number }
\end{aligned}
$$

Therefore, $41^{k+1}-14^{k+1}$ is a multiple of 27 .
Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

Q24 :

Prove the following by using the principle of mathematical induction for all $n \in \mathrm{~N}$:
$(2 n+7)<(n+3)^{2}$

Answer:

Let the given statement be $\mathrm{P}(n)$, i.e.,
$\mathrm{P}(n):(2 n+7)<(n+3)^{2}$
It can be observed that $\mathrm{P}(n)$ is true for $n=1$ since $2.1+7=9<(1+3)^{2}=16$, which is true.
Let $\mathrm{P}(k)$ be true for some positive integer k, i.e.,
$(2 k+7)<(k+3)^{2} .$.
We shall now prove that $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Consider
$\{2(\mathrm{k}+1)+7\}=(2 \mathrm{k}+7)+2$
$\therefore\{2(\mathrm{k}+1)+7\}=(2 \mathrm{k}+7)+2<(\mathrm{k}+3)^{2}+2 \quad[$ using $(1)]$
$2(\mathrm{k}+1)+7<\mathrm{k}^{2}+6 \mathrm{k}+9+2$
$2(\mathrm{k}+1)+7<\mathrm{k}^{2}+6 \mathrm{k}+11$
Now, $\mathrm{k}^{2}+6 \mathrm{k}+11<\mathrm{k}^{2}+8 \mathrm{k}+16$
$\therefore 2(\mathrm{k}+1)+7<(\mathrm{k}+4)^{2}$
$2(\mathrm{k}+1)+7<\{(\mathrm{k}+1)+3\}^{2}$

Thus, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by the principle of mathematical induction, statement $\mathrm{P}(n)$ is true for all natural numbers i.e., n.

